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The many different structures proposed for 
dielectric wave guides are computationally large 
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RF 
• Claddings 
• 2D rod arrays 

u Metallic 
u Dielectric 

Optical 
• Dielectric fibers 
• 3D structures like 

woodpiles 
• Gratings 

SIMULATIONS EMPOWERING YOUR INNOVATIONS 3 

Two directions of current photonic cavity 
research are similar computationally 

Have common goals 
• Reduce wake fields (Stable) 
• Improve coupling 
• Increase breakdown voltage 
• … 



DLA, DWA modeling presents extreme 
computational challenges 

• Structured mesh (preferably Cartesian) for 
particles 

• Large complexity (parallel) (many layers), so 
distributed memory computing 

• Accurate in both time and frequency domain: 
embedded boundaries 

• Good dispersion for near speed of light 

What are the appropriate algorithms? 
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We have made several algorithm advances 

• First 2nd-order accurate embedded boundary 
algorithm for dielectrics 

• Not presented (First scalable frequency domain algorithm for 
embedded boundary metallics) 

• Controlled dispersion for non-cubic cells 
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Computationally, continuum Maxwell 
equations become discrete matrix multiplies 
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• Maxwell discretized by finite difference 

 
• Same for E 
• Regularly structured data is desired 

u Best for access, esp on modern architectures 
u Works well (only?) with particles if rectilinear 

• But then, conformal (curved) surfaces are represented 
by embedded boundaries 
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Cache-optimized update blazingly fast 

• Previous tanks at 
300k cells = 1703  

• Now arbitrarily large 
systems 

• Billion cells at 1 step/s 
on one cpu 

• Not yet in Vorpal, but 
planned this year 

• Dielectrics: perhaps 
50% 

• GPU Speed 
• Not yet at theoretical 

limit 
SIMULATIONS EMPOWERING YOUR INNOVATIONS 7 



Precise Dey-Mittra boundary conditions give 
local  O(Dx), global O(Dx2) 

• DM use integral form of Faraday 
u Multiply E by lengths 
u Divide by area 

• DM not derived but heuristic 
u only Faraday changed 
u B no longer centered so how further 

differenced? 
• (Unpublished) derivation exists 
• Gustafson "theorem" 
• Modifies matrix form 
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B. Gustafsson, Math. Comput. 29, 396 (1975). 
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Embedded mettalic boundary (conformal, cut-
cell, Dey-Mittra, PBA) computations more 
accurate  

Stair-step boundary condition (MAGIC, MAFIA, OOPIC) has first-
order error.  
Dey-Mittra (1997) technique has the second-order error. 
30x improvement in accuracy at 10 cells/scale length 



Embedded boundary algorithm for dielectric 
conformal surfaces just developed 

J. Comput. Phys. 230, 2060-2075 (2011)  
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Basics of algorithm: find local, 1st-order 
accurate relation between E and D 

• Assume local plane having different dielectrics on 
each side 

• Assume normal D, tangential E continuous 
• Find D(Dn, Et), E(Dn, Et) 
• Invert first to find (Dn, Et) 
• Insert these into second to get D to E transformation 
• Multiple triads imply multiple methods… detail 
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Result: Perfect 2nd-order convergence  
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Dielectric sphere inside metal sphere 



Frequency domain: Regular grid allows 
Richardson extrapolation, 3rd order for free 

• Dielectric sphere inside metal sphere, 
Richardson 
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For beam simulations, need time domain 

•  Problem: Matrix is not 
symmetric 

• Has numerical 
instability 

• However, forced 
symmetrization gives 
very good answer 

• GR Werner, CA 
Bauer, JR Cary - 
arXiv:1212.4857, 
2012 

•  Accepted J. Comput. 
Phys., Aug 2013 

• Will appear 2014 
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Good results for small contrast 
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For beam problems, standard FDTD can be 
problematic due to dispersion 

• Wavelength 
comparable to 
transverse 
dimension: cubic 
cells 

• CFL implies 
• At Nyquist limit 
• Quite subluminal 
• Choices: 

u Increase number of 
cells longitudinally 
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Controlled dispersion allows one to fix this 

• Gets ω = kc exactly along beam direction 
• Requires propagation dx ≤ others, works for 
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Controlled dispersion eliminates numerical 
Cerenkov, other nonphysical fields 
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Controlled dispersion can give factor of 2 
difference in final energy in LPA 
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Wake fields in PhC Structures 
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Wake potential calculations identify 
troubling frequencies 

• VORPAL PIC 
•  8-cell cavities; identical cells 
• Bunch length σz = 1mm; bunch cutoff ≈ 50 GHz 
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Hybrid, optimized cavities: lower longitudinal wake 
fields, comparable transverse 

CLIC Opt-18 
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Tri-4 



Understanding of frequency comes from 
computing infinite-lattice dispersion relation 
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Modes vary in angle 
Band shown by transit in k space 



Comparing transverse dipole wake impedance with 
PhC band diagram indicates harm from dispersion 
inflection points 
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A 
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Conclusions 

• Embedded boundary algorithms can combine 
accuracy with data structures needed for speed 
u New frequency domain embedded boundary 

dielectric algorithm is second order 
u Time domain correspondent has good accuracy 
u Dispersion control removes non physical effects 

• Wakefields for PhC cavities understood, modes 
identified 
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Lots of directions 

• Cache aware dielectric algorithms 
• Improved coupling 
• Dispersive media 
• Accurate surface fields (multipacting, heating, 

breakdown) 
• Optimal implementations with advanced 

instructions and on accelerators 
u AVX 
u GPU 
u MIC 

• Do we continue to custom code each chip?  (Or 
move to OpenCL or OpenACC? 
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