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DWA background, motivation 
 New paradigm for high-frequency, high 

field acceleration 

 High gradient DWA applications 
 Linear colliders and other HEP  
 Advanced accelerator for future FEL 
 Radiation Source (THz) 

 Relevant Issues in DWA research 
 Determine achievable field gradients 
 Resonant excitation 
 Transverse modes and BBU 
 Dielectric materials 
 Cladding composition  
 Exploit new geometries (slab) 
 Photonic structure development 
 Transformer ratio enhancement… 

 

Simple 2-beam collinear dielectric 
wakefield accelerator  



DWA v1.0: metal clad dielectric tube 

• Peak decelerating field 
(heuristic model) 

“Tuning” parameters: 

Ez on-axis, OOPIC 

• Gradient adjustable on the 
fly via Nb and σz (a and b 
through tube substitution) 

• Pioneered at ANL AWA 



Development of Experimental 
Methods in THz DWA 

2012 2008 2009 2010 2011 

M. Thompson et al., PRL 100, 214801 (2008) 
Breakdown studies @ SLAC FFTB   

A. Cook et al., PRL 103, 095003 (2009) 
CCR spectra @ UCLA Neptune   

G. Andonian et al., APL 98, 202901 (2011) 
Selective mode excitation @BNL ATF 

TM02 

Fundamental @ 
noise floor 

S. Antipov et al., PRL 108, 144801 (2012) 
Chirp suppression @ BNL ATF 

G. Andonian et al., PRL 108, 244801 (2012) 
Accel. in slab @ BNL ATF 

S. Antipov et al., APL 100, 132910 (2012) 
Wakefield map in diamond @ BNL ATF 



Spin-off: THz CCR from DWA 
 Chicane-compressed (200 µm) 0.3 

nC beam @ UCLA Neptune 
 Focused with PMQ array: σr~100 µm 

(a=250 µm) 

 Single mode operation 
 Two tubes, different b, THz frequencies 
 Extremely narrow line width in THz 

 Higher power, lower width than THz FEL 
 Higher harmonics possible  

 Methodology developed at UCLA 
CER experiments at BNL ATF 
 Refined further since 

A. Cook, et al.,  Phys. Rev. Lett.  
103, 095003 (2009)  



THz applications 

 Chemical specificity 

 Mainly broadband 
sources 

 Biologicial/medical 

 Security applications 

Liver cancer  
imaging 

Leaf water content 

Decay of pill surface 
Standoff weapons 



Narrow-band THz FEL v. CCR 

 CCR more efficient 

 CCR more compact  

THz FEL: 6.5%BW, Power 10 MW,L=1 m  

CCR THz: 0.5% BW, L=1 cm!   

Many wavelengths in the train 



No emphasis of CCR in field! 



Photonic confinement 
 Metals very lossy 

 Confinement using a 
single dielectric 

 Synergistic with 
dielectric laser 
accelerator 
 Ex: GALAXIE 

 



Slab Bragg array:  
1D-photonic structure 

 Motivation 
 T481: Al cladding vaporized  
 Mode confinement without metal 
 1st step to mode control with 

photonics  
 Concept: Bragg arrays 

 Easier in slab geometry 
 Alternate layers of high/low -ε material 

(quartz, diamond, sapphire, ZTA) 
 Confine “defect mode” in bandgap 

Planar Bragg accelerator (PBA) 

OOPIC sims: strong confinements 

Post-mortem from T481 



DWA – Bragg structure 
 ZTA – SiO2 layers 

 SiO2 “matching” layer 

 



UCLA Bragg DWA experiment at ATF 
 E = 50 MeV 

 σx, σy = 60µm 

 Q ~ 200pC 

 σt ~ 1ps 



OOPIC (2D) simulations  
 2D slab symmetry 

 Layout 

 Longitudinal field estimate 

 Frequency spectrum 



Coherent Cerenkov Data 

 Autocorrelation 

 FFT for frequency spectrum 

 Fundamental mode near 160 
GHz observed 
 Confinement works! 
 1st photonic 

 Large “CTR” signal 



VORPAL 3D: Longitudinal field: Ex in x-y plane, bisecting e- bunch 

Diffraction! 

D. Bruhwiler (Univ. Colo.) 



3D Photonic Structure: Woodpile 
 3D photonic structure 

 Take advantage of advances in 
photonic structure development 

 Synergy with laser-fed structures 
 Defect mode control in 3D. 

 Example: Woodpile 
 Canonical problem 
 Laser accelerator favorite 

 Microfabrication techniques 
 Sapphire rods (ε=11.5) 

 As built gives backward wave!  

 

Channel: 
250um 
125um rods 
(Sapphire 

B. Naranjo et al., Proc AAC 2012 

Woodpile  
Constructed  
structure image 

CST model 



Launching geometry for woodpile 

 External fields aid impedance 
matching for launcher 
 “Standard” UCLA rectangular horn 

 Woodpile, holder fabricated 

Woodpile (CST simulation) 

Woodpile as built 



Woodpile Experiment Results 
 Woodpile structure 

 Sapphire rods for woodpile (125µm) 
 240µm beam gap 
 Hand assembled at UCLA 
 Matching horn incorporated  

 BNL ATF 
 50MeV, 100pC 

 Results under study 
 Paper in preparation 
 Scaled GALAXIE structure fabricate 

by laser assisted etching of 
sapphire 

 

Interferogram FFT 

Scaled Galaxie 



E201 goals at FACET  
 Nominal Beam parameters 

 20-23 GeV, Q=3 nC 
 σz = 20 µm, σx,y=20 µm (hope!) 

 Excite >GV/m fields in DWA 
 CCR interferometry 
 Various geometries, materials 

 Slab 
 Bragg (Photonics) 

 Breakdown 
 Energy modulation 
 Acceleration 
 TR enhancement 
 Positrons  

 Diagnostics 
 CTR/CCR interferometry 
 Breakdown observation 
 Dipole Spectrometer 
 Transverse/longitudinal 

measurements 

• Planned for 2013 run 
• Existing FACET beam and 

available diagnostics 
• Requires variable bunch length 
• Requires variable aspect ratio (flat 

beams) 

Requires drive-witness pair (next!) 
Requires ramped bunch 
Requires… positrons 

Requires long structure (done!) 



Experimental Layout (old) 

IP2A 

IP2B 

Kraken 
Chamber 
(circa 2011) 

Horn 4mm clearance 
OAP w/ 3mm hole 
HeNe laser alignment 

e-beam 



Array of DWA Tubes/Slabs installed 

SEM of SiO2 tube 

TUBES 
   -SiO2 (ID/OD = 200/330um,  L= 1cm) 
-SiO2 (ID/OD = 450/620um, L = 1cm) 
SiO2 (ID/OD = 450/620um, L = 1-cm) 
 BRAGG SLAB 
   - ZTA + QUARTZ   (g/t1/t2 = 240/115/210µm, 
 L=24mm) 
   

OTR fo  
Slabs, 
Bragg 

Tubes 

As installed (Summer 2012) 
5-axis motion 
Visual confirmation 

UCLA and Euclid fabrication New! Improved! 10 cm tubes! 
Excellent metal cladding developed at UCLA 



Metallic coating on dielectric 
 UCLA Developed robust 

coating 
 K. Fitzmorris, J. Harrison 

 Recipe: 
 1µm Ti (transition) 
 1µm Cu (adhesion) 
 100µm Cu (bulk) 

 No problems with coating loss 
or degradation 

 
 



Available Diagnostics 
 Dipole (momentum 

spectrum). Used it!  

 Transverse beam imaging 
 OTR 
 Wire scanner (upstream) 

 Pulse temporal extent 
 CTR interferometry 
 BLIS + pyro 

 Deflector 

 DWA emissions 
 Coherent – CCR 

interferometry 
 Incoherent –optical 

(“breakdown camera”) 
 



New UCLA/SLAC interaction chamber 

• Sent to vendor (~ 2 months) 
• Many ports (small to large) 
• Rad-hard stages 
• Easier alignment 
• Dedicated HeNe injection port 
• Halo monitor 
• Compact 150 GHz calibration sou  

Top view 

S. Barber 

4” TPX port 



New bunch length measurement 
 CTR scan slow 
 Use real time interferometer (RTI) 
 Single shot, spatial autocorrelation 

 Mix beams at small angle 
 Linear pyro array (Radiabeam/Gentec) 
 Commissioned at Fermilab A0 
 Ideal for FACET parameters 

 Rad hard? 
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Real Time Interferometer
Martin-Puplett Interferometer

Comparison to Michelson 

Raw image 
G. Andonian et al., PAC09, 3988 (2009) 
J. Thangaraj et al., RSI 83, 043302 (2012) 

Layout 



First FACET results 
 ~GV wakes in tubes and slabs observed 

 

 

 

 

 

 100 MW narrow band THz source 

wakes in 450 um I, 1 cmD tubes OOPIC sims of tube wake 



Results: 450 um ID, L=10 cm  

• Correct fundamental  
• λ=750 um 
• Several 100 mJ energy 



Applications 
 Narrow band permits new horizons 

 Fully coherent, use for lensless imaging 

 Phase contrast imaging 
 Popular in X-rays 

Enhance contrast in image… Phase contrast effect from ICS 

Experiments at FACET begun in last month 



 Measured energy loss  
 3 nC, 20x20 um beams 
 10 cm long structures  
 GV/m sustained acceleration 

(June 2013)!  

New results point to 2 GV/m peak fields (100 MeV change)! 



Pulse shaping for FEL: reaching 
high transformer ratios 

 How to make wakefield acceleration more 
powerful 

 Reach high (FEL) energy with single 
DWA module? 

 Enhanced transformer ratio with ramped 
beam 

 

 FEL scenario: 0.5-1 GeV ramp driver; 5-
10 GeV X-ray FEL injector in <10 m 
 Matches length of advanced undulator  

Symmetric beam R<2 

Ramped beam R>>2 



Example: DWA-driven 5th 
generation light source 

 Beam parameters: Q=3 nC, 
ramp L=2.5 mm,U=1 GeV  
 Possible at SLAC FACET 

 Structure: a,b=100,150 µm, 
ε=3.8; fundamental @ f=0.74 
THz 

 Performance: Ez>GV/m, R=9-10       

 Ramp achieved at UCLA, BNL 

 Enables hard X-ray source  
w/high average power, small 
footprint? 

 

Longitudinal wakefields 
with ramped beam 

Longitudinal phase space 
after 1.3 m DWA (OOPIC)  R. J. England, J. B. Rosenzweig, and G. Travish,  

PRL 100, 214802 (2008) 

Ramped beam using sextupole-corrected 
dogleg compression  



Bunch shaping using self-wakefields 

 Design knobs: ID, OD, material, geometry (e.g. planar w/ variable gap) 
 Choose  λ~ σz/3 

 Also useful for PWFA 

 Similar layout used for bunch trains - Antipov, PRL 111, 134802 (2013) 

 



Wakefield shaping outlook 
 Phase space for BNL ATF 

parameters 
 300pC, σz~100µm 
 DWA: 2a/2b=200/340µm, 

f=0.9THz, L=1cm 
 R56 <4mm 

 • Mimics ramped dist. w/ 
“doorstep” 
– Nearly constant Ez 

w/in bunch 
– Further optimization 
– Expt at BNL ATF 

• TCAV measurement 

 



Summary 
Progress in demonstrated gradient 
New photonic structures,  
 needed for high frequency  

On to witness beam (next run), pulse 
shaping at FACET 
New scheme test at BNL 

Structure losses, deflecting modes 
Begin to utilize applications (THz) 
Makes field more rapidly mature  
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