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DWFA driven XFEL Collaboration 

 A group to investigate using Dielectric Wakefield Acceleration to drive X-ray-Free 
Electron Lasers. 

 3 institutions: ANL, LANL, FNAL 
 Readytalk meetings held 1-2 times per month (Group started summer 2013) 
 Mission: 

– Strawman Facility Layouts 
– Staging DWFA 
– Ultimate energy gain of a staged DWFA 
– Maximum repetition rate of a staged DWFA 
– Energy efficiency of a staged DWFA 
– Dielectric structure design and engineering 
– Control of the beam energy spread and chirp 
– BBU control and transverse wake fields 
– Tolerances, stability, reproducibility 
– Design of the demonstration experiment 
– Production of the optimal drive beam. 

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All" 

Topics discussed 
at meetings so far 



High Repetition-Rate, Soft X-ray FEL User Facility 
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2 GeV 50 MeV 

Low-emittance injector: 
• 1 MHz bunch rep. rate 

Flexible x-ray beamlines 
• Tunable pulse length 
• Seeded 
• 2 color seeded 
• SASE 

Lasers linked with a 
fiber-optics time 

distribution network 

Beam spreader 
• 100 kHz bunch rep. rate 

Capable of serving 
~2000 scientists/year 



Multi-user soft x-ray FEL facility based on: SRF linac 
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Capable of serving 
~2000 scientists/year 

Low-emittance injector: 
• 1 MHz bunch rep. rate 

Flexible x-ray beamlines 
• Tunable pulse length 
• Seeded 
• 2 color seeded 
• SASE 

Lasers linked with a 
fiber-optics time 

distribution network 

Beam spreader 
• 100 kHz bunch rep. rate 

2 GeV 50 MeV 

~50 m ~100 m 

~ 300 m 

~ 250 m 

~ 50 m 

750m 

CW superconducting linac 
~1MHz bunch rep. rate 
~2 GeV beam energy 
~1 kA peak current 



Multi-user soft x-ray FEL facility based on: DWFA linac 
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Beam 
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~30 m 

Compact DWFA linac 
~1MHz bunch rep. rate 
~2 GeV beam energy 
~1 kA peak current 

~100 m ~50 m 

2 GeV 

Beam 
Shaper 

Dielectric Wakefield Acceleration (DWFA) linac 

200 MeV 

Concern: Heat 
Load 

The mask in an eex 
based bunch shaper 

may intercepts a lot of 
beam current and may 

melt at 200 MeV. 



Multi-user soft x-ray FEL facility based on: DWFA linac 
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~30 m 

Compact DWFA linac 
~1MHz bunch rep. rate 
~2 GeV beam energy 
~1 kA peak current 

~100 m ~50 m 

2 GeV 

Low Energy 
Beam Shaper 

Dielectric Wakefield Acceleration (DWFA) linac 

200 MeV 

Concern: Heat 
Load 

We are exploring 
moving the shaper to 
low energy (~10 MeV) 

10 MeV 



Drive and Witness from the same source bunch minimal timing jitter 
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Double EEX technique:  
a convenient tool for drive and witness bunch shaping 
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General (nonlinear) shapes are possible 

leaf 

Multi-leaf collimator: 
• Used in medical linacs to shape the x-rays  
• Each vertical leaf moves independently 

Multi-leaf collimator 

Varian's 120-leaf 
multileaf collimator 

Varian's high-definition 
multileaf collimator  



Feedback on desired witness and drive shape 

http://varian.mediaroom.com/i
ndex.php?s=31899&mode=gal
lery&cat=2473 
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Investigate EEX based bunch shaping 
at the Argonne Wakefield 
Accelerator 

INTRODUCTION LONGITUDINAL BUNCH SHAPING WITH AN EEX BEAMLINE 



Transport matrix: Emittance exchanger 

𝑅𝐷𝐷𝐷 𝑅𝐷𝐷 𝑅𝑇𝑇𝑇𝑇 𝑅𝐷𝐷 𝑅𝐷𝐷𝐷 

𝑅𝐷𝐷𝐷 = 𝑅𝐷𝐷𝐷 =
1 𝐿
0 1

0 𝜂
0 0

0 𝜂
0 0

1 𝜉
0 1

 

𝑅𝐷𝐷 = 𝑅𝐷𝐷 =
1 𝐷
0 1

0 0
0 0

0 0
0 0

1 0
0 1

 

𝑅𝑇𝑇𝑇𝑇 (thin-lens) =
1 0
0 1

0 0
𝑘 0

0 0
𝑘 0

1 0
0 1

 

𝑅𝐸𝐸𝐸 = 𝑅𝐷𝐷𝐷 ∙ 𝑅𝐷𝐷 ∙ 𝑅𝑇𝑇𝑇𝑇 ∙ 𝑅𝐷𝐷 ∙ 𝑅𝐷𝐷1 

       =

𝑅11 𝑅12
𝑅21 𝑅22

𝑅15 𝑅16
𝑅25 𝑅26

𝑅51 𝑅52
𝑅61 𝑅62

𝑅55 𝑅56
𝑅65 𝑅66

   =    

    0                      0                  
0 0

𝑘(𝐿 + 𝐷) 𝜂 + 𝑘𝜉(𝐿 + 𝐷)
𝑘 𝑘𝜉

   𝑘𝜉         𝜂 + 𝑘𝜉(𝐿 + 𝐷)
𝑘     𝑘(𝐿 + 𝐷)

          0                      0            
0 0

 

1. Emittance Exchange  
 
 

2. Bunch Shaping  
𝑧𝑓 = 𝑘𝜉𝑥𝑖 + 𝜂 + 𝑘𝜉 𝐿 + 𝐷𝐷 𝑥′𝑖 

Applications 
before after 



Three ways to control the shaping process 

12 

1. Beam line  
Characteristics changes based on the beam line… 

Add quadrupole / sextupole 

Add cavity 

2. Shape of the Mask 3. Initial beam conditions 

• Beam line still have many weak points. It 
will be modified. 

• Mask shape will be determined based on 
the first order theory. 

• We will focus on the initial beam 
conditions for the shaping. 

• Details in the next slides… 



Limitations of the Bunch Shaping eex-based beamline 

1. Uniform distribution / zero emittance / thin-lens / 1st order /no SC/ no CSR 
 

2. Non-Uniform distribution / zero emittance / thin-lens / 1st order/no SC/ no CSR 
 

3. Non-Uniform distribution / finite emittance / thin-lens / 1st order/no SC/ no CSR 
 

4. Non-Uniform distribution / finite emittance / thick-lens / 1st order/no SC/ no CSR 
 

5. Non-Uniform distribution / finite emittance / thick-lens / 1st & 2nd order /no SC/ no CSR 
 

6. Non-Uniform distribution / finite emittance / thick-lens / 1st & 2nd order/ SC/no CSR 
 

7. Non-Uniform distribution / finite emittance / thick-lens / 1st& 2nd order/ SC/ CSR 
 

Simplest case 

Realistic case 

What realistic effects disturb the shaping process?? 



1. Uniform distribution / zero emittance / 
thin-lens / 1st order /no SC/ no CSR 
 

Horizontal profile 
Current profile 

Simplest case 

x,z 

# of 
par. 

Exit Entrance 

x,z 

# of 
par. 

𝑧𝑓 = 𝑘𝜉𝑥𝑖 + 𝜂 + 𝑘𝜉 𝐿 + 𝐷 𝑥′𝑖 

𝑧𝑓 = 𝑘𝜉 −
𝛼𝑥
𝛽𝑥

𝜂 + 𝑘𝜉 𝐿 + 𝐷 𝑥𝑖  

If we have quasi-linearity between xi and x’I 
    and the expression for zf 
 
 
Then the final Current profile at the exit follows horizontal profile at the entrance 
 

𝑥𝑥𝑖~ −
𝛼𝑥
𝛽𝑥
𝑥𝑖 



1. Uniform distribution / zero emittance / 
thin-lens / 1st order /no SC/ no CSR 
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x,z 

# of 
par. 

x,z 

# of 
par. 

x,z 

# of 
par. 

x,z 

# of 
par. 

Simple triangle mask 

w\o Mask w\ Mask 
Entrance Exit Entrance Exit 

Exchanged profiles 

Horizontal profile 
Current profile 

Simplest case 

Exchanged profiles 



2. Non-Uniform distribution / zero emittance / 
thin-lens / 1st order/no SC/ no CSR Horizontal profile 

Current profile 

Gaussian Distribution w\o Mask Gaussian Distribution w\ Mask 

Cannot use Triangular Mask Shape 



2. Non-Uniform distribution / zero emittance / thin-
lens / 1st order/no SC/ no CSR 

x 

y 
Initial 2D Gaussian 

Transverse Mask 
𝑦 = 𝑓(𝑥) 

Initial 2D population 

𝑁 𝑥, 𝑦 =
𝑁𝑡𝑡𝑡

2𝜋𝜎𝑥𝜎𝑦
 𝑒
− 𝑥2

2𝜎𝑥2
+ 𝑦

2

2𝜎𝑦2  

 
Initial horizontal population 

𝑁 𝑥 =  
𝑁𝑡𝑡𝑡
2𝜋 𝜎𝑥

 𝑒
− 𝑥

2

2𝜎𝑥2  𝑒𝑒𝑒
𝑓(𝑥)

2𝜎𝑦
 

 
Required shape of the transverse mask 

f 𝑥 =  2 𝜋 𝜎𝑦 𝑖𝑖𝑖𝑖𝑖𝑖 2𝜋 𝜎𝑥
g x
𝑁𝑡𝑡𝑡

exp ( 𝑥2

2𝜎𝑥2
)  

x 

Number 
of particle 

Desired Horizontal 
Population 
𝑁 = 𝑔(𝑥) 

• Current initial population is not a Gaussian. 
• The shape of the mask is determined numerically. 

 
Relation between f, g and N 
 

𝑔 𝑥 = 2 � 𝑁 𝑥, 𝑦    𝑑𝑑
𝑓(𝑥)

0
 

Determine Mask Shape 



3. Non-Uniform distribution / finite emittance / thin-
lens / 1st order/no SC/ no CSR 
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Entrance Exit 

𝑧𝑓 = 𝑘𝜉𝑥𝑖 + 𝜂 + 𝑘𝜉 𝐿 + 𝐷 𝑥′𝑖 

Tail growth 

Tail growth caused by overlap of R52 and ∆x’ • R52=0 
• Minimize emittance 
• Increase beam size 

solution 



4. Non-Uniform distribution / finite emittance / thick-
lens / 1st order/no SC/ no CSR 

𝑅𝑇𝑇𝑇𝑇  =
1 0
0 1

0 0
𝑘 0

0 0
𝑘 0

1 0
0 1

 

𝑅𝑇𝑇𝑇𝑇 =

1      𝐿𝑐  
0      1   

𝑘𝑘𝑐/2  0
𝑘  0

 0   0
 𝑘   𝑘𝑘𝑐/2

1 0 
𝑘2𝐿𝑐/4 1 

 

𝑅𝐸𝐸𝐸 =

0                   
𝐿𝑐
4                   

0 0

𝑘(𝐿 + 𝐷 +
𝐿𝑐
4 ) 𝜂 + 𝑘𝜉(𝐿 + 𝐷 +

𝐿𝑐
4 )

𝑘 𝑘𝜉

𝑘𝜉 𝜂 + 𝑘𝜉(𝐿 + 𝐷 +
𝐿𝑐
4 )

𝑘 𝑘(𝐿 + 𝐷 +
𝐿𝑐
4 )

          
𝐿𝑐
4 𝑘2𝜉                       

𝐿𝑐
4 𝑘2𝜉2            

𝐿𝑐
4 𝑘2

𝐿𝑐
4 𝑘2𝜉

 

𝑧𝑓 = 𝑘𝑘𝑥𝑖 + 𝜂 + 𝑘𝑘 𝐿 + 𝐷 𝑥𝑥𝑖𝑠  +
𝐿𝑐
4
𝑘2𝜉𝑧𝑖 +

𝐿𝑐
4
𝑘2𝜉2𝛿𝑖 

• The thick-lens terms significantly affect both the tail and the head 

Normalized longitudinal position
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A
rb

.

0.0

0.2

0.4

0.6

0.8

1.0
Thin-lens
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• This effect can be suppressed by setting 
last two terms equal to zero  

𝐿𝑐
4
𝑘2𝜉𝑧𝑖 +

𝐿𝑐
4
𝑘2𝜉2𝛿𝑖 = 0 

𝑧𝑖
𝛿𝑖

= −
1
𝜉

 Soln: chirp = 



4. Non-Uniform distribution / finite emittance / thick-
lens / 1st order/no SC/ no CSR 

Normalized longitudinal position

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

A
rb

.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Chirp: -9
Chirp: -14
Chirp: -19
Chirp: -24

Normalized longitudinal position

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

A
rb

.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Chirp: 9
Chirp: 4
Chirp: 0
Chirp: -4
Chirp: -9

• 𝑅56 = 𝑅55 × 𝜉 

• Longitudinal chirp of −1/𝜉 can suppress the thick-lens effect. 

• Chirp near -9 has short tail, and tail length increases as chirp changes. 

Suppression of thick-lens effect 



5. Non-Uniform distribution / finite emittance / thick-
lens / 1st & 2nd order /no SC/ no CSR 
 
𝑧𝑓 = 𝑅52𝑥𝑥1 + 𝑅55𝑧1 + 𝑅56𝛿1 + 𝑇533𝑦12 + 𝑇534𝑦1𝑦𝑦1 + 𝑇544𝑦𝑦1

2 + 𝑇522𝑥𝑥1
2 + 𝑇526𝑥𝑥1𝛿1 + 𝑇566𝛿1

2  

• This change mostly happens when the beam passes the second dog-leg. 
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5. Non-Uniform distribution / finite emittance / thick-
lens / 1st & 2nd order /no SC/ no CSR 

x-x' slope
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𝛿1 = 𝑘𝑥𝑖 + 𝑘 𝐿 + 𝐷 + 𝐿𝑐/4 𝑥𝑥𝑖 + 𝐿𝑐/4 𝑘2𝑧𝑖 + 𝐿𝑐/4 𝑘2𝜉𝛿𝑖 

• We could reduce T566 by adding elements to the beamline but … 
 

• We want to reduce the energy spread at the entrance of the 2nd dog-leg. 

• Appropriate initial slope and chirp will reduce the energy spread δ1. 

𝑇566𝛿1
2 

→ Directly linked with the current profile at the exit 
→ Makes convex head 
→ No tail 

𝛿1 = 𝑘𝑥𝑖 + 𝑘 𝐿 + 𝐷 𝑥𝑥𝑖 
𝑧𝑓 = 𝑘𝜉𝑥𝑖 + 𝜂 + 𝑘𝜉 𝐿 + 𝐷 𝑥′𝑖 



5. Non-Uniform distribution / finite emittance / thick-
lens / 1st & 2nd order /no SC/ no CSR 

– x-x’ slope (most important)  
– y-y’ slope (weak effect) 
– longitudinal chirp. 
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2 𝑇533𝑦12 𝑇534𝑦1𝑦𝑦1 𝑇544𝑦𝑦1
2 

Conclusion: The 2nd order effects can 
be mostly suppressed with the proper 
choice: 



6. Non-Uniform distribution / finite emittance / thick-
lens / 1st & 2nd order/ SC/no CSR 
 

Normalized longitudinal position
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Cavity φ=0 deg 

Cavity φ=-15 deg 

Cavity φ=-25 deg 

Best chirp for SC is opposed to previous; 
therefore chirp is a compromise 



Non-Uniform distribution / finite emittance / thick-lens 
/ 1st& 2nd order/ SC/ CSR 

output output 

Before quads Before quads 

WITH CSR 
and LSC 

D. Shchegolkov (LANL) 



Demonstrate EEX based bunch 
shaping at the Argonne Wakefield 
Accelerator 

BEGINNING EXPERIMENTAL STUDIES 1: 



Demonstrate bunch shaping using a double-dog leg 
EEX beamline 

RF 
Photocathode 
Gun 

Linac Quads 

Mask 

20 
deg 

14 MeV 

B1 B2 TDC 

8 MeV 

B1 
B2 B3 B4 

at the AWA Facility 

 Demonstrate bunch shaping and compare measured shape to 1st order theory 
 Measure EEX transfer matrix 
 Study 2nd order effects in beamline 
 Study space charge effects in beamline 

Initial experimental goals: 

The 
Argonne Wakefield Accelerator Facility 
 Low Energy (14 MeV) beamline 

Additional magnets ordered from Radiabeam 



Demonstrate bunch shaping using a double-dog leg 
EEX beamline 

chirp 

RF 
Photocathode 
Gun 

Linac Quads 

multiple masks on 
motorized actuator  

20 
deg 

14 MeV 

B1 B2 TDC 

8 MeV 

B1 
B2 B3 B4 

at the AWA Facility 

Key tunable parameters 

x-x’ & y-y’ 
beam size & slope 

The 
Argonne Wakefield Accelerator Facility 
 Low Energy (14 MeV) beamline 



Demonstrate bunch 
shaping using a double-
dog leg EEX beamline 

4 nC / 8 MeV ~13 MeV 

Injector 

Control longitudinal chirp 
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Determine base current profile 
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Experiment I - Shaping ability of Masks 
Multiple masks used to study bunch shaping 

PARMELA Simulation results 

x [mm]
-12 -8 -4 0 4 8 12

y 
[m

m
]

-12

-8

-4

0

4

8

12

x [mm]
-12 -8 -4 0 4 8 12

y 
[m

m
]

-12

-8

-4

0

4

8

12

x [mm]
-12 -8 -4 0 4 8 12

y 
[m

m
]

-12

-8

-4

0

4

8

12

x [mm]
-12 -8 -4 0 4 8 12

y 
[m

m
]

-12

-8

-4

0

4

8

12

x [mm]
-12 -8 -4 0 4 8 12

y 
[m

m
]

-12

-8

-4

0

4

8

12

Normalized longitudinal position
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

A
rb

.

Longitudinal position [mm]
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

A
rb

.

Longitudinal position [mm]
-3 -2 -1 0 1 2 3

A
rb

.

Horizontal profile after the mask 
Final current profile 
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Masks: 
2 in sq, 100 um thick, Tungsten 



Experiment II - Shaping ability of Beam Parameters 
1. Find relations between initial beam condition and shaped current profile 
2. Observe the effect of space-charge 

Goal 

x 

x’ 

x 

x’ 

x 

x’ 

z 

δ 

z 

δ 

z 

δ 

• Set nominal parameters: x-x’ slope, y-y’ slope, longitudinal chirp, and charge. 

• Vary one parameter at a time: with quadrupoles, rf cavity phase, and mask. 

• Observe the current profile and energy profile. 



Experiment II - Shaping ability of Beam Parameters 
1. Find relations between initial beam condition and shaped current profile 
2. Observe the effect of space-charge 

Goal 

1. linac phase φ= -30 deg  suppress 2nd order effect 

2. linac phase φ=0 deg  suppress SC effect (long bunch length)  Normalized longitudinal position
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Normalized longitudinal position
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EXAMPLE 
  PARMELA Simulation results 

What is the best chirp?? 
A compromise between suppressing 2nd order 
vs. SC effects. 

*linac phase φ= -30 deg (chirp = −1/𝜉 = -7)  
*linac phase φ= 0 deg (chirp = −1/𝜉 = -2)  

Compromise: linac phase φ=15 deg  



Experiment III - Transport matrix measurement 

34 

1. Experimentally measure the transport matrix 

2. Analyze space-charge effect and CSR effect in the emittance exchanger 

Goal 

Strategy 

z 

x 

x’ 
x 

x’ 

z 

δ 

1. Initially give the longitudinally two bunch which are very close. 

2. Make the beam like a color part in the figure using the quad and slit-like mask. 

3. Compare the horizontal and longitudinal beam positions, divergence, and energy of each color. 



Summary 
 The concept: High Repetition-Rate, Soft X-ray FEL User Facility 

– 10 DWFAs linacs driven by a single SRF linac  
– 10 FEL lines @ 100 kHz rep. rate. 
– Compact, Inexpensive, and Flexible 

 A working group has started feasibility studies 
 Bunch Shaping Experiments to start Spring 2014 

– Study the fundamental structure (double dogleg eex) 
– Explore the limits of the shaping process 

 We welcome collaborators and new ideas! 
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